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Abstract. The approach to equilibrium of single mode radiation in a cavity is studied. 
The master equation formed from the diagonal elements of the density matrix is solved in 
general for arbitrary initial photon probability distributions. Several examples are studied 
including the decay of an initial Poisson distribution (coherent state) to the equilibrium 
Bose-Einstein distribution. The concept of a mixed Poisson process is introduced and its 
physical implications examined in the context of the present problem. A general expression 
for the nonstationary correlation function of the photon field is also obtained. 

1. Introduction 

The purpose of this paper is to examine the approach to equilibrium of the photon 
probability distribution of a single mode radiation field in a cavity (maintained at 
constant temperature) given an initial distribution of photons. If we work in the number 
representation of the photon field, then only the diagonal elements of the photon density 
matrix will enter into the analysis through a master equation for the time-dependent 
probability distribution. Shimoda et ul (1957) have already examined some aspects of 
this problem in their pioneering paper on the (linear) photon description of the maser. 
Whereas they were interested in amplifying solutions, we seek decaying solutions. 

We have obtained an explicit evaluation of the first and second order probability 
distributions of the photon field ; furthermore, we have obtained a genercil expression 
(in closed form) for the nonstationary correlation function of the photon field. Several 
examples of initial distributions are considered. particularly an initial Poisson distribu- 
tion (coherent state in  the number representation). 

We also introduce the concept of a mixed Poisson process and examine its physical 
implications in  the context of the present problem. I t  is shown that after a sufficient 
length of time ( t  > 0). the number of photons in the cavity becomes and stays a mixed 
Poisson process. For an initial Poisson distribution (coherent state), the process is 
mixed Poisson for all time. However, this is not generally true as we will prove. 

Our problem is another version of the damped harmonic oscillator problem already 
considered by Glauber (1970) from the point of view of his coherent state representa- 
tion. 

2. Basic equations 

Let n( t )  be the number of photons in the cavity at time t .  n( t )  is a stochastic process whose 
associated first-order probability distribution is P,,(i), the probability of having n photons 
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in the cavity at  time t .  Assuming the cavity is maintained at constant temperature, the 
master equation for Pn(t) is 

where U is the absorption coefficient and /3 the emission coefficient. This equation was 
first derived by Shimoda et a1 (1957) and has since been derived by density matrix 
techniques (Scully and Lamb 1968, 1969, Scully 1970, Pike 1970). Equation (2.1) is a 
differential difference equation of a type that occurs in the stochastic theory of birth- 
death processes (Bailey 1964). 

Equation (2.1) is conveniently solved via use of a generating function Q(A, t )  defined by 
m 

Q(E., t )  = 1 P,,(t)(l-A)”. 
f l = O  

If Q(2, t )  is known, Pn(t) can be obtained in principle by differentiation 

The generating function can be shown to satisfy the first-order partial differential 
equation 

The initial conditions on Q are : 
cc 

Q(0, t )  = 1 Pfl(t) = 1 
n = O  

m 

Q(A,  0)  = 1 Pn(0)(l -A)”. 
n = O  

We will utilize Lagrange’s method to solve equation (2.4) rather than employ the 
usual Laplace transform method because of the simplicity and power of the former 
method. Reference is made to Bailey (1964) for an excellent account of the method. 
We can show that the general solution of equation (2.4) can be written as 

where g is to be determined by the initial condition at t = 0 as given in equation (2.6). 
This is most easily accomplished by a change of variable such that the argument of g 
is a single parameter. Consequently we set 

and solve for ,l in terms of y( l ,O).  We then write equation (2.7), evaluated at t = 0, 
in terms of y(1,O); the final result is 
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The function g(y(E., t ) )  is then determined by observing that y(E,, t )  = y ( i ,  0) exp{ - ( r  - ,4)t). 
Consequently, we obtain the general time-dependent behaviour of Q(A, t )  by replacing 
y(i., 0) with ~( i . ,  t )  in  equation (2.8). 

Before considering any specific examples of initial conditions. we note time enters 
the arbitrary function g only in the exponential of its argument. Under ordinary 
circumstances (ie non-lasing action), s( > P and therefore at equilibrium ( t  = x). 

The n th  derivative of Q(E., E) is easily evaluated and the resultant photon distribution 
function is 

(2.10) 

where TI(=) = / ? ! ( x - , 8 )  is the mean number of photons in  the cavity at equilibrium. 
The right hand side of equation (2.10) is the Bose-Einstein distribution expressed in 
terms of its mean value. 

> r so that lasing action occurs then the solutions of equation (2.1) are 
unbounded functions of time. However, the linear master equation given in equation 
(2.1) is too simple a model and non-linear terms must be added to it, reference is made to 
Scully and Lamb (1967) for this aspect of the problem. In what follows we tacitly 
assume r > 8. 

When 

3. Mixed Poisson processes 

One difficulty with the generating function approach is the necessity of having to take 
high-order derivatives of Q in order to  obtain P,. Since Q is generally a complicated 
function, taking of high-order derivatives rapidly becomes an unpleasant, if not hopeless, 
task. Instead, we introduce a new function W(s. t ) ,  as the inverse Laplace transform 
of Q ( i ,  t )  

Q(;., t )  = W(s. t )  e-"s ds. 
0 

Repeated differentiation of Q with respect to i. according to  equation (2.4) leads to the 
result 

The usefulness of this device is obvious. Provided we can evaluate W(s,  t )  given 
Q(i., t ) ,  then P,(t) can be obtained by integration rather than by repeated differentiation. 
Even if W(s,  t )  cannot be evaluated analytically or is so complicated that equation (3.2) 
defies explicit evaluation, we can still evaluate the integral numerically using Gauss- 
Laguerre quadrature. 

This integral representation of P,,(t) is more than just a useful computational device. 
Suppose that W(s,  t )  were itself a probability density function over the interval (0, x) 
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with respect to  s. A necessary and sufficient condition for this to be true is for W(s, t )  
to be a real function and simultaneously satisfy : 

Iom W(s, t )  ds = 1 for all t (3.3) 

and 

W(s, t )  2 0 for all s and t .  (3.4) 

The f i r s t  condition is automatically satisfied by virtue of equations (3.1) and ( 2 . 5 )  
irrespective of the second condition. The possible non-negative character of W(s, t )  
has to be handled on an individual basis. 

I f  the above conditions are satisfied, then P,,(t) defines a mixed Poisson process (the 
terms compound and generalized have also been used). The interpretation is simple. 
The real variable s in equation (3.2) is non-negative since it is confined to the interval 
(0, CO). The factor s" exp( -s) /n!  in the integrand is a Poisson distribution with respect 
to s, the mean ofthe distribution. Consequently P,(t) can be thought ofas a distribution 
formed from a Poisson distribution in which the mean s is a random variable having 
probability density W(s,  t) .  A detailed summary of many of the pertinent properties 
of mixed Poisson processes along with an extensive bibliography is given in Haight 
(1966). 

The mere fact that P,,(t) is expressible in the form given in equation ( 3 . 2 )  does not 
mean that P,,(t) is mixed Poisson, since W(s,  t )  can be negative. The important point 
is that W(s,  t )  simultaneously satisfy equations (3 .3 )  and (3.4). That a number of in- 
vestigators, particularly in photoelectron counting statistics, have not noticed this 
distinction has led to some confusion. 

When P,,(t) is a mixed Poisson process, then the factorial moment of order r of 
P,,(t) is equal to the rth moment about the origin of the mixing density W(s,  t ) .  The mean 
and variance of n(t)  in terms of W(s, t )  are : 

i i ( t )  = q t )  ( 3 . 5 )  
var n( t )  = ii( t )  + var s( t )  (3.6) 

where 

var s(t)  = (s - ~ 7 ) ~  W(S ,  t )  ds. s: ( 3 . 7 )  

The expression for the variance is extremely interesting because it shows that the 
total variance of the number of photons in the cavity is composed of two terms : the 
first term is the variance of a Poisson process and would be the only term if the photons 
showed no tendency to cluster. The second term is the contribution of the mixing 
density W(s, t ) .  Since this second contribution is positive, we have an important result ; 
namely, the variance of the mixed Poisson is greater than the variance of a simple Poisson 
having the same mean. If the variance of n(t) were less than that of the corresponding 
simple Poisson, then n(t) could not be a mixed Poisson process even though it possessed 
the integral form given in equation (3.2). The mixing density contribution to the 
variance of n(t) is simply a manifestation of the fact that photons have a tendency to 
cluster. 
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I t  is a simple matter to prove that n( E) is a mixed Poisson process by direct manipula- 
tion of equation (2.10). 

4. Coherent state initially 

If we choose the initial distribution to be Poisson, that is. 

then the initial state is a coherent state (Glauber 1963) in  the number representation. 
The coherent state then decays to the equilibrium state and we wish to follow the 
relaxation process through a study of P,,(t). 

The generating function corresponding to equation (4.1) is 

Q(k 0) = exp( - i i i (0 ) ) .  

Following the procedure outlined in 9: 2, it  is 
dependent generating function has the form 

1 ex,( s) 
Q(i., t )  = ~ 

1 + a ( t ) i  

where 

(4.2) 

straightforward to show that the time- 

(4.3) 

c( t )  E ii(O)e-.;. (4.5) 

The mean number of photons is 

$ 1 )  = ii( x) + ($0) - e( x)) e - / .  (46) 

In  order to calculate W(s,  t ) ,  let us substitute Q(i r )  as given by equation (4.3) into 
We postpone the calculation of the variance until we have the mixing density W(s,  t ) .  

equation (3.2) and make the change of variable z = ( 1  + aE.)s;a. The result is 

The modified Bessel function I,(x) is positive for x 2 0 ;  consequently W(s,  t )  is always 
non-negative. Therefore, the relaxation of an initial coherent state to the equilibrium 
Bose-Einstein state is a mixed Poisson process for all times. 

To obtain the photon distribution itself, we substitute equation (4.7) into equation 
(3.2) and make the change of variables 

S c 
z = - ( I  +a),  x =  -~ 

U 4 1  + a )  
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We have 

P,(r) = ( L)nc l + a  l + a  J: $.Jo(aJ(zx)) e-'dz 

l + a  l + a  l + a  a ( l + a )  
= -( 1 L ) " e x p (  - z ) L n (  -) -C 

(4.8) 

As t (or 7 )  approaches infinity, the argument of the Laguerre polynomial tends to zero 
(but L,(O) = 1) with the result P,(t) tends to the Bose-Einstein distribution. 

This same distribution appears in the theory of photoelectron counting statistics 
for the superposition of a coherent and a chaotic excitation (Lachs 1965, Glauber 1966). 
The time dependence is basically inverse to our situation. In the photon counting 
case, time corresponds to the time interval the photon counter is exposed to the field. 
The counting distribution is then Bose-Einstein for very short times and tends to the 
Poisson as the time interval is increased ;just the opposite of our situation. 

We calculated the distribution function for some typical values and the results are 
shown in figires 1 and 2. 

Since W(s,  t )  is now known, it is a straightforward calculation to  show that 

5. m photons initially 

Let us now consider the case of m photons initially in the cavity with 

$0) = m, varn(0) = 0 

so that the initial distribution is the unit distribution 

P,(O) = 1, Pn(0) = 0 for n # m. 

Number of photons 

Figure 1. P.(T) for an initial coherent state with ii(0) = 2, and E(m) = 5 : A T = 0, B T = 0.5, 
C T = 2.5 and D T = m. 
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Number o f  photons 

Figure 2. P,(T) for an initial coherent state with i ( 0 )  = 8. and i( x J = 5 .  A 7 = 0. B T = 0.5. 
C r = 2 5 a n d D r =  % .  

We will jind that the cases rn = 0 and ni > 0 possess an  entirely diflerent initial (ie small 
time) behaciour. 

Another interpretation of equation (5 .2)  is a s  a conditional probability. namely the 
probability of having n photons in the cavity a t  time t given that we had m photons at 
time zero. In the usual notation this is written as Pin, tlm, 0). The  importance of this 
statement lies in the fact that it allows us to obtain the correlation function of the photons 
(see 9 6). 

One  can easily show that the initial gznerating function is 

Q(i 0) = ( 1  - ;.)". (5 .3 )  
The formal procedure for determining Q(E.. t )  leads to 

( 1  -;.e-:+a(t)E.)" 
( 1 + a( t ) i ) "+  

Q(;.. t )  = (5.4) 

where a ( [ )  is defined in equation (4.4). 
The mean and variance are : 

E ( t )  = E ( s ) + ( m - E ( x ) ) e - ; '  ( 5 . 5 )  

var nit) = n ( t ) + ( n ( t ) ) 2 - ( ( m + m 2 ) e - 2 " .  (5.6) 
The expression for the mean is identical with that of the coherent state. equation (4.6). 
and in fact any initial distribution of photons leads to  equation (5.5) as Siegman (1964) 
has shown. Reference is made to  Loudon (1970) for a discussion of the cariance of a n  
arbitrary initial distribution of photons. 

If this process is t o  be mixed Poisson, then by equation (5.6) 

( f i ( ~ ) ) ~ - ( m + m ' )  e-2;' 2 0 (5.7j 

for all times 0 6 t < x.  Clearly such a condition cannot be satisfied uniformly in 
time if m > 0 (although it is true for m = 0). In the general case of arbitrary m and nix), 
the left hand side of equation (5.7) will be negative for some finite time after which it 
will become positive due  to  the dominating effect of the exponential. The varn(t) 
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during the initial stages, is less than that of the corresponding simple Poisson distribu- 
tion ; this fact precludes the possibility that relaxation to the Bose-Einstein distribution 
forms a mixed Poisson process uniformly in time. We already know that the long time 
behaviour of any initial distribution must be mixed Poisson. 

In view of the behaviour of the variance, we know that W(s,  t )  can only be a proba- 
bility density after an initial passage of time depending on m and ~ ( c o ) .  In  the short 
time region W(s, t )  must take on negative values. This is easily verified by noting that 
W(s,  t )  has the form (see the appendix) : 

(5.8) 

The condition that W(s, t )  2 0 is equivalent to requiring that the argument of the 
Laguerre polynomial be negative, since Lm( -x) 2 0 for all m and x > 0. We can 
always find a time small enough for (a  e'- 1)  to be negative, namely e;' < a - ' .  The 
argument of the Laguerre polynomial is then positive and W(s,  t )  takes on negative 
values. For longer times, however, just the opposite holds and W(s,r) 2 0. Once 
W(s,  t )  is positive, it remains positive for all future times and the process is mixed 
Poisson. 

Our primary purpose, in this section, was to demonstrate the unusual initial behaviour 
of the unit distribution v is  a vis the mixed Poisson process. However, the formal expres- 
sion for Pn(t) is not difficult to derive. We simply substitute equation (A.6) into equation 
(3.2) and employ the integral 

e-'"xkL,(x)dx = k ! ~ - ~ - '  2F1(-1,k+1, 1 , z - l ) .  (5.9) 

Since 1 is a positive integer, it follows from the theory of hypergeometric functions 
that 2F1 is a polynomial in z-' of degree 1 and not an infinite series. The final result is 

for m > 0 and 

Pn(t) = ~ - 
1 + n(t) i 1 + n(t) n(t) In (5.1 1 )  

for m = 0. The probability distribution for the case of no photons at t = 0 is always a 
Bose-Einstein distribution whose mean is a function of time given by equation (4.5). 
The solution given by equation (5.11) is known (Pike 1970). 

If the initial condition is taken at  t ,  rather than at zero, then we are calculating 
P(n, t,lm, t l )  with t z  2 t , .  Since the process n(t)  has stationary increments, the only 
effect is to  replace t by ( t z -  t l )  in equation (5.10). 

In the limit as t + cc, equation (5.10) tends to  the Bose-Einstein distribution. 
Thus, we can also interpret the Bose-Einstein distribution as a conditional distribution. 

6. Correlation function 

We now turn our attention to the correlation function G(r2, t l )  = G(t, ,  r 2 )  which is 
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where P(n,  t 2  : m, t l )  is the joint probability of obtaining m photons at t ,  and n photons 
at 1 , :  ( t 2  2 t , ) .  We can rewrite this in terms of the conditional probability P(n. t,lm, t l )  
already derived in the previous section ; thus 

mPm(tl) 1 nP(n, t21m. t l )  E(n(t2)n(t1)) = 
m n 

= mPm(t,) ( f i (cc)+(m- ~ ( s c ) )  exp( - I?, - ; i l l ) ) .  (6.3) 
m 

This series can be expressed in terms of the mean and variance of n ( t l ) .  Hence, 

G(t,. t l )  = { 1 -exp( - 17, -711)}fi(w)fi(tl)+ex~( - 17, -?ll)(n(tl))2 

+exp( --I?, -?, I )  var(n(t,))-n(t,)fi(t,). (6.4) 

This result is perfectly general and its explicit evaluation depends on the initial distribu- 
tion of photons via the mean and variance. 

Since the underlying process is nonstationary, the correlation function depends on 
both t ,  and t , .  However, as we approach the steady state G(t , , t , )  must become a 
function of ( t ,  - t l )  and not t , ,  t ,  individually. This can be demonstrated by taking any 
initial distribution and letting t ,  and t , become infinite in such a manner that ( t ,  - 1,) 
remains finite. 

The limiting form of the correlation function at  equilibrium is easily obtained 
directly via the Bose-Einstein distribution. We have 

f i ( r  ,) = f i (  x) 

var(n(t,)) = ( f i ( ~ ) ) ~ + f i ( c c ) ,  (6 .5)  

G(lt2 - t l i )  = { ( f i ( ~ ) ) ~  + f i (m)} exp( - b2 - ?,I) (6.6) 

consequently, 

is the correlation function at thermal equilibrium. 
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Appendix 

The analysis required to evaluate W(s,  t )  from Q(i, t )  for the initial condition of 0 5 is 
outlined. To  begin we expand Q(A, t ) ,  as given in equation (5 .2 ) ,  in terms of a binomial 
series 

The corresponding expression for W(s,  t )  is 

where 

This integral can be evaluated by contour integration. Since s is real and non- 
negative, convergence is assured by closing the contour to the left. Furthermore a > 0 
is that the pole of order ( I  + 1) at A = -a -  lies on the negative real axis. Upon applying 
the Cauchy residue theorem, we obtain 

The right hand side of this expression is reminiscent of Roderigue's formula for Laguerre 
polynomials, in fact 

d" 
-(x" e-") = n! e-"L,(x). 
dx" 

If we set x = s/a, then by obvious manipulations, we obtain W(s,  t )  in the form 

Fortunately, this finite series can be summed via the identity 

upon setting 

p = (1 -aeY)-', z = s/a. 

The final result is 
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